# Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards

Journée "Robotics et Neuroscience", 19 Oct 2018

Rituraj Kaushik • Jean-Baptiste Mouret

Team LARSEN, INRIA Nancy Grand-Est

# Model Based Policy Search (MB-PS)

**MB-PS** are the most data-efficient RL algorithms<sup>1</sup>.

Examples: Black-DROPS<sup>2</sup>, PILCO<sup>3</sup>

**MB-PS** involves two steps:

- Learns a dynamical model of the robot.
- Optimizes a policy to maximize the expected return given the model and its uncertainties.



<sup>&</sup>lt;sup>1</sup>Chatzilygeroudis et. al. "A survey on policy search algorithms for learning robot controllers in a handful of trials." arXiv preprint:1807.02303, 2018. <sup>2</sup>Chatzilvgeroudis et. al., Black-Box Data-efficient Policy Search for Robotics. In Proc. of IROS, 2017.

<sup>&</sup>lt;sup>3</sup>Deisenroth et. al., Gaussian processes for data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell., 2015.

Black-DROPS and PILCO solves standard benchmarking tasks in only few seconds of interaction.

• Eg: Cart-pole swing up task in 20 seconds of interaction



Current MB-PS works great for simple tasks where reward functions are not sparse

## Problem with current MB-PS

#### However

- Many interesting real world tasks might have naturally sparse rewards.
- For example:



#### **Reward function**

 $reward = k * drawer_displacement$ 

*i.e* Reward is proportional to drawer displacement

• Current MB-PS such as PILCO , Black-DROPS do not have explicit strategy to deal with sparse reward.

### **RL** with Continuous State/Action

- Action perturbation and policy parameter perturbation with noise
- **Count-based** approaches, **Bayesian RL** to cover state space as uniformly as possible
- Hindsight Experience Replay<sup>4</sup>: learn from unsuccessful episodes also by associating them to a pseudo goal
- **Reverse curriculum**<sup>5</sup>: Learn form an easy initial state and progressively start from more difficult state
- Intrinsic reward: Encourage actions by additional reward that reduces the uncertainty about the agent's prediction of its actions.

<sup>&</sup>lt;sup>4</sup> Marcin Andrychowicz et. al., Hindsight experience replay. In Proc. of NIPS, 2017

<sup>&</sup>lt;sup>5</sup> Carlos Florensa et. al., Reverse curriculum generation for reinforcement learning. In Conference on Robot Learning, 2017.

#### **Developmental and Evolutionary Robotics**

Idea is to cover a user defined space called "Outcome space" as uniformly as possible

- Novelty search<sup>6</sup>: Search for policy that gives novel outcomes.
- **Quality-diversity**<sup>7,8</sup>: Search for diverse high performing solutions.
- **Curiosity driven learning**<sup>9</sup>: Accomplish goals progressively based on increasing difficulty.

<sup>&</sup>lt;sup>6</sup> Joel Lehman et. al., Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation, 2011.

 <sup>&</sup>lt;sup>7</sup> Antoine Cully et. al., Quality and diversity optimization: A unifying modular framework. IEEE Trans. on Evolutionary Computation, 2018.
<sup>8</sup> Jean-Baptiste Mouret et. al., Illuminating search spaces by mapping elites. arxiv:1504.04909, 2015.

<sup>&</sup>lt;sup>9</sup> Sebastien Forestier et. al., Curiosity-driven development of tool use pre-cursors: a computational model. In Proc. of COGSCI, 2016.

*Unfortunately*, all the these approaches need thousands of trials to find a working policy.

For example:

### **TRPO-VIME**

Around 10,000 trials to solve cart-pole swing up task with sparse reward

### Hindsight Experience Replay (HER)

Around 8,000 trials to find policy so that a manipulator pushes an object to a desired location

It is infeasible to perform that many trials on real systems

# **Our motivation**

### We take the inspiration from 3 ideas:

1. Novelty search

Continues to explore the task-space (or behavior space) even if no reward is observed

### 2. Model-based policy search

- Optimizes the policy to improve the reward using the learned dynamical model
- Fewer interaction time with the system

### 3. Pareto-based multi-objective optimization

- No need to aggregate the objectives with different weights.
- Give a set of Pareto-optimal solutions

# Multi-objective Data-efficient Exploration: Multi-DEX

- Combining the 3 ideas to address the problem of sparse reward in Robot Learning in a data efficient manner.
- We frame it as a **Pareto based multi-objective model-based policy search** problem with 3 objectives:

1. Maximize novelty

produce maximally novel state trajectories in the system

#### 2. Maximize reward

produce maximally rewarding state trajectories

### 3. Minimize model prediction variance

keep the system as close as to the more certain region of the model

We consider the following dynamical systems of the form:

$$\mathbf{x}_{t+1} = \mathbf{x}_t + f(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{w}$$
(1)

- $\mathbf{x} \in \mathbb{R}^{E}$ : continuous-valued states
- $\mathbf{u} \in \mathbb{R}^{F}$ : continuous-valued controls
- w: i.i.d. Gaussian system noise
- f : unknown transition dynamics

• Our goal is to find a *policy*  $\pi(\mathbf{u}|\mathbf{x}, \theta)$  parameterized by  $\theta \in \mathbb{R}^{\Theta}$  that maximizes the  $J_r(\theta)$ 

$$J_r(\boldsymbol{\theta}) = \mathbb{E}\left[\sum_{t=1}^T r(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1}) \middle| \boldsymbol{\theta}\right]$$
(2)

where  $r() \in \mathbb{R}$  is the reward for being in state  $\mathbf{x}_t$ , taking action  $\mathbf{u}_t$ , and reaching state  $\mathbf{x}_{t+1}$ .

 We assume that r can be sparse or may have plateaus; *i.e.*, it can be zero for most values of (x<sub>t</sub>, u<sub>t</sub>, x<sub>t+1</sub>) or have large regions with constant value.

# Multi-DEX Approach: Transition Dynamics and Reward Model learning

- We learn the forward transition dynamics of the system with Gaussian Process
- Training inputs: tuples of states  $\mathbf{x}_t$  and actions  $\mathbf{u}_t$  (*i.e.*,  $\mathbf{\tilde{x}}_t = (\mathbf{x}_t, \mathbf{u}_t) \in \mathbb{R}^{E+F}$ )
- Training targets: The difference between the current and the next state vector,  $\Delta_{\mathbf{x}_t} = \mathbf{x}_{t+1} - \mathbf{x}_t \in \mathbb{R}^E$
- Then, E independent GPs are used to model each dimension of the difference vector Δ<sub>xt</sub>.
- If required, we additionally learn a reward function r(x<sub>t</sub>) : ℝ<sup>E</sup> → ℝ using Random Forest.

# Multi-DEX Approach: Learning System Dynamics with Sparse Transitions

- The intuition here is to have a balanced blend of ordinary trajectories and trajectories with rare transitions (leading to high reward) for model learning.
- We maintain two fixed sized buffers to keep non-rewarding and best rewarding trajectories for model learning



# Multi-DEX Approach: Exploration-Exploitation Objectives

### **Cumulative Return**

$$\hat{J}_{r}(\theta) = \sum_{t=1}^{T} r(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}, \mathbf{x}_{t-1} + f_{\mu}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}))$$
(3)  
where  $\mathbf{u}_{t-1} = \pi(\mathbf{x}_{t-1}|\theta)$ 

#### **Novelty**

It is the minimum Euclidean distance to the expected state trajectories (using the current model) of already executed policies from that of the policy to be evaluated. Produce novel state trajectories  $\beta_{\theta}$  w.r.t policy parameter  $\theta$ 

$$\hat{J}_n(\theta) = \min(||eta_{ heta} - eta||^2)_{orall eta \in \mathbb{B}}$$
 (4)

#### **Cumulative Model-Variance**

We define the cumulative model-variance for a policy  $\pi_{\theta}$  as the negative mean of the step-by-step model prediction variances:

$$\hat{J}_{\sigma^2}(oldsymbol{ heta}) = -rac{1}{T}\sum_{t=1}^T (||\sigma_{oldsymbol{x}_t}||^2)$$

where  $x_t$  is given by applying the policy  $\pi_{\theta}$  on the model

(5)

# Multi-DEX Approach: Multi-Objective Policy Search

We optimize the policy for the objectives  $\hat{J}_r(\theta), \hat{J}_n(\theta), \hat{J}_{\sigma^2}(\theta)$  using a Pareto based multi-objective optimization algorithm NSGA-II.



We compare to several state-of-the-art approaches in a sequential goal reaching task and in a drawer opening task:

- 1. Black-DROPS, a model-based policy search algorithm
- 2. TRPO<sup>10</sup>, a model-free policy gradient approach
- 3. **TRPO** with the **VIME**<sup>11</sup> exploration strategy
- 4. CMA-ES<sup>12</sup>, a black-box optimizer effective for direct policy search, and
- 5. **GEP-PG**<sup>13</sup>, an curiosity-driven model-free approach.

<sup>&</sup>lt;sup>10</sup> John Schulman et. al., Trust region policy optimization. In Proc. of ICML, 2015.

<sup>&</sup>lt;sup>11</sup> Rein Houthooft et. al., Vime: Variational information maximizing exploration. In Proc. of NIPS, 2016.

<sup>&</sup>lt;sup>12</sup> Nikolaus Hansen. The CMA Evolution Strategy: A Comparing Review. Springer, 2006.

<sup>13</sup> Cedric Colas et. al., GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms. In Proc. of ICML, 2018.

- Goal: To reach the green goal while first passing through the blue region.
- Episode length: 4 seconds
- Control frequency: 10Hz.
- **Policy**: Feed-forward neural network
- **Reward function**: A positive reward is given only when end effector passes through the blue region and is within 0.1m radius of the green goal's centre.

### Sequential Goal Reaching with a 2-DOF Robotic Arm



**Figure 1:** Best reward found per trial (20 replicates). Multi-DEX finds working policies in about only 7 minutes of interaction (around 100 episodes/trials).

### Drawer Opening Task with 2-DOF Robotic Arm

- **Goal**: To open a drawer with a 2-DOF robotic arm and to go back to the up-right position.
- Episode length: 4 seconds
- Control frequency: 10Hz.
- Policy: Feed-forward neural network
- Reward function: The total reward is composed of two rewards
  - 1. A small positive reward is given proportional to the drawer displacement
  - 2. Another reward is given which is inversely proportional current state and target state of the arm if the drawer is already open.

### Drawer Opening Task with 2-DOF Robotic Arm



**Figure 2:** Best reward found per trial (20 replicates). Multi-DEX finds working policies in about only 14 minutes of interaction (200 trials).

### Deceptive pendulum swing-up task

- Pendulum powered by an underpowered torque-controlled actuator.
- **Goal**: To swing the pendulum to the upright position applying torques as small as possible (*i.e.*, using minimum power) to the actuator and hold it in that position.
- Episode length: 4 seconds
- Control frequency: 10Hz.
- Policy: Feed-forward neural network
- Reward function:
  - A constant positive reward of +10 every time-step if the pendulum is in upright position
  - Gets a negative reward proportional to the square of torque for every time step.

### Deceptive pendulum swing-up task



**Figure 3:** Best reward found vs number of trials plot for Pendulum Swing-up Task. The plot clearly outperforms all the competing approaches and achieves very high reward (balancing the pendulum in upright position) in just 100 trials (approx 6.6 minutes of total interaction)

# **Additional Experiments**

### High dimensional state-space



**Figure 4:** Drawer opening task with 4-DOF arm

### Non-sparse reward problem



**Figure 5:** Single goal reaching task with 4-DOF arm. The reward is a function of the distance between the end effector and the goal. Multi-DEX is competitive to Black-DROPS in non-spare reward scenarios.

- Multi-DEX with priors from simulator so that it can be used in complex robots with high dimensional state-space.
- Multi-DEX for fast damage recovery in robotics.

If you want to know more about this topic, we have a paper that will be presented at Conference on Robot Learning (CoRL) 2018 soon.

**Paper:** R. Kaushik, K. Chatzilygeroudis, and J.-B. Mouret, "Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards", *Conference on Robot Learning (CoRL)*, 2018.

Main Arxiv.org/pdf/1806.09351.pdf

**Questions or Comments?**